Reasoning about transfinite sequences (extended abtract)
نویسندگان
چکیده
We introduce a family of temporal logics to specify the behavior of systems with Zeno behaviors. We extend linear-time temporal logic LTL to authorize models admitting Zeno sequences of actions and quantitative temporal operators indexed by ordinals replace the standard next-time and until future-time operators. Our aim is to control such systems by designing controllers that safely work on ω-sequences but interact synchronously with the system in order to restrict their behaviors. We show that the satisfiability problem for the logics working on ω-sequences is expspace-complete when the integers are represented in binary, and pspace-complete with a unary representation. To do so, we substantially extend standard results about LTL by introducing a new class of succinct ordinal automata that can encode the interaction between the different quantitative temporal operators.
منابع مشابه
Reasoning About Transfinite Sequences
We introduce a family of temporal logics to specify the behavior of systems with Zeno behaviors. We extend linear-time temporal logic LTL to authorize models admitting Zeno sequences of actions and quantitative temporal operators indexed by ordinals replace the standard next-time and until future-time operators. Our aim is to control such systems by designing controllers that safely work on ω-s...
متن کاملOn ( transfinite ) small inductive dimension of products ∗
In this paper we study the behavior of the (transfinite) small inductive dimension (trind) ind on finite products of topological spaces. In particular we essentially improve Toulmin’s estimation [T] of trind for Cartesian products.
متن کاملA Rapidly Convergent Nonlinear Transfinite Element Procedure for Transient Thermoelastic Analysis of Temperature-Dependent Functionally Graded Cylinders
In the present paper, the nonlinear transfinite element procedure recently published by the author is improved by introducing an enhanced convergence criterion to significantly reduce the computational run-times. It is known that transformation techniques have been developed mainly for linear systems, only. Due to using a huge number of time steps, employing the conventional time integration me...
متن کاملFunctional interpretation and inductive definitions
Extending Gödel’s Dialectica interpretation, we provide a functional interpretation of classical theories of positive arithmetic inductive definitions, reducing them to theories of finite-type functionals defined using transfinite recursion on well-founded trees.
متن کاملRice and Rice-Shapiro Theorems for transfinite correction grammars
Hay and, then, Johnson extended the classic Rice and Rice-Shapiro Theorems for computably enumerable sets, to analogs for all the higher levels in the finite Ershov Hierarchy. The present paper extends their work (with some motivations presented) to analogs in the transfinite Ershov Hierarchy. Some of the transfinite cases are done for all transfinite notations in Kleene’s important system of n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005